E-Graphs, VSAs, and Tree Automata: a Rosetta Stone

Yisu Remy Wang®
University of Washington
remywang@cs.washington.edu

Altan Haan
OctoML
ahaan@octoml.ai

Many tasks in programming languages involve representing
and manipulating sets of programs. In program synthesis,
the goal is to find a program satisfying a given specifica-
tion from a set of programs possibly generated by a given
grammar. In program optimization, the goal is to find an
efficient program from the set of programs equivalent to
the input. Programming languages research has considered
various abstractions to represent sets of programs. Two ex-
amples are the version space algebra (VSA) [Lau et al. 2003;
Mitchell 1982], popularized by FlashFill [Gulwani 2011] for
enumerative program synthesis, and the e-graph [Nelson
1980; Nieuwenhuis and Oliveras 2005] that lies at the heart
of an array of new program optimizers [Willsey et al. 2021].
In this talk we show that VSAs and e-graphs are but special
cases of the well-studied finite-state (tree) automata from
formal language theory. This new perspective allows us to
place VSAs and e-graphs on a firm theoretical foundation,
and also enables us to leverage powerful tools from formal
language theory to perform tasks in programming languages.
In the converse, bridging the concepts can also contribute
to tree automata research with techniques developed for
e-graphs and VSAs.

Background. For an intuition of e-graphs, VSAs and tree
automata we give an example of each. Consider represent-
ing the set of 9 terms 7 = {f(g(X),g(Y))}, where X,Y €
{a, b, c}. Fig. 1 gives the e-graph, VSA, and tree automaton
representing this set. In an e-graph, alternative expressions
are grouped together to form the so-called e-classes, shown
in dotted boxes in Fig. 1a. The expressions a,b and c are
grouped together under e-class 1. Function symbols then
point to these groups as children, while aggressively sharing
common sub-parts. For example, f points to e-class 2 twice
as its left and right children. In VSA, alternatives are com-
bined with the union operator U, while function symbols
may point to such union operators. Finally, in a tree automa-
ton multiple expressions may lead to the same state, and
each function symbol connects its children states to a parent
state. The similarity between the three is striking, and they
all appear to function by grouping and sharing subterms
in the same way. Though works involving VSAs, e-graphs,
and tree automata typically construct and use them very

“Wang is supported by NSF IIS 1907997 and NSF IIS 1954222.

James Koppel
MIT
jkoppel@mit.edu

Josh Pollock
MIT
jopo@mit.edu

differently, their representational capabilities appear quite
similar.

In fact, we shall see that tree automata strictly generalize
e-graphs and VSAs. In particular, when we impose different
invariants on a tree automaton, we immediately obtain an
e-graph or a VSA as special cases. By taking an automata-
theoretic perspective, we benefit from the long and fruitful
history of research on finite state automata. We are empow-
ered to leverage its powerful tools for tasks in programming
languages. We share an early result from this synergy, by
improving e-graph-based optimizers using automata mini-
mization algorithms. We will also discuss several avenues for
future work that study the connection between the three, in-
cluding applications in invariant inference and termination
analysis by completion.

Automata Minimization. A classic operation on finite
state automata is minimization. Given a automaton, min-
imization returns an automaton that recognizes the same
language but contains fewer states. Because an e-graph is a
tree automaton, we can use the same minimization proce-
dure to reduce the size of any e-graph. A smaller e-graph
can lead to faster optimization in equality saturation, be-
cause the extraction phase of equality saturation runs in
time dependent on the e-graph size. For example, many ap-
plications of equality saturation aim to eliminate common
subexpressions [Wang et al. 2020; Yang et al. 2021]. Most of
them achieve this goal by encoding the extraction problem
into an integer linear program (ILP). ILP-solving is NP-hard
in general, and has been shown to be expensive in prac-
tical applications of equality saturation. Several heuristics
have been proposed to sacrifice optimality for faster extrac-
tion [Yang et al. 2021]. In contrast, we show that reducing
the e-graph size by minimization can shorten extraction time
while guaranteeing optimality.

We implemented a minimization algorithm in the egg [Willsey

et al. 2021] library for equality saturation, and ran exper-
iments using the library’s integration test suites. One test
suite implements standard algebraic rules on simple arith-
metic, as well as some elementary rules for symbolic differen-
tiation; the other contains rewrite rules for a small language
based on lambda calculus. We run equality saturation on all
input expressions found in each test suite and optimize for
expression size. In particular, we compute size after reusing



(b) Version-space algebra.

Yisu Remy Wang, James Koppel, Altan Haan, and Josh Pollock

(c) Tree automaton.

Figure 1. Comparison of an e-graph, a VSA, and a tree automaton.

common subexpressions, so the expression x + x has a size
of 2 (1 for + and 1 for x) instead of 3. To extract the optimal
program, we follow the ILP encoding in [Tate et al. 2009] and
assign a cost of 1 to every e-node. The total cost of a program
is therefore exactly the number of e-nodes it contains.

To investigate the impact of minimization, we measure
the extraction time before and after minimization, as we
show in Figure 2. We see that minimization can lead to faster
extraction especially for larger instances.

Naturally, one may ask what kind of classes and expres-
sions got merged during minimization. Surprisingly, when
we sampled pairs of terms from merged classes, virtually ev-
ery pair could have been proven equivalent using the rewrite
rules! Then why were they not merged during rewrite ap-
plication? The reason is that missed equivalences are not
so unusual in practical applications of equality saturation.
Because most application domains require rules that cause
explosive, or even unbounded growth of the e-graph, rewrite
application usually stops before reaching a fix point. This
means if one were to apply more rewrites, it is possible to
identify additional equivalences in the e-graph. This obser-
vation leads to an alternative way to shrink the e-graph by
using the rewrite rules: simply perform a second phase of
rewrite application, but only apply a rewrite if it combines
existing classes without introducing new nodes. Because this
second phase only combines existing classes which makes
the e-graph smaller, it will reach a fix point in time at most lin-
ear to the e-graph size. Using rewriting rules may also result
in an e-graph smaller than one obtained with automata min-
imization, because the rules provide semantic information
whereas an automaton treats its terms purely syntactically.
We can also compose the two approaches to further reduce
the e-graph size. Specifically, we invoke the automata min-
imization algorithm after the second phase of merge-only
rewrite applications. Figure 2 compares the impact on extrac-
tion time of automata minimization, merge-only rewrites,
and a combination of both. Depending on the situation, any
of the three methods may lead to the fastest extraction.

A minimized % merged min+merge
150
<
Q.
o
@ 100 /
o
c
9]
X
S A
c
Ie) *
° 50 /
£ A
i *
'Y
0 X * A
0 50 100 150

ILP time on original e-graph

Figure 2. Impact of minimization on ILP time.

Using E-graphs to Prove Unreachability. We have also
discovered that the tree automata community has studied
an operation identical to that of extending an e-graph with
a rewrite rule, namely the tree automata completion of Genet
et al [Feuillade et al. 2004; Genet 2014, 2016; Genet and Rusu
2010]. From this connection, we are able to port ideas from
this line of work to e-graphs. In particular, Genet et al use
the idea of overapproximating tree automata completion by
adding extra edges between nodes (eclasses). When over-
approximated completion reaches saturation, the resulting
tree automaton soundly overapproximates the set of terms
reachable via rewrites. It would be straightforward to use
this idea in e-graphs, allowing them to be used to prove
unreachability and thus to prove safety properties.



E-Graphs, VSAs, and Tree Automata: a Rosetta Stone

References

Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. 2004.
Reachability Analysis over Term Rewriting Systems. Journal of Auto-
mated Reasoning 33, 3 (2004), 341-383.

Thomas Genet. 2014. A Note on the Precision of the Tree Automata Completion.
Ph.D. Dissertation. IRISA.

Thomas Genet. 2016. Termination Criteria for Tree Automata Completion.
Journal of Logical and Algebraic Methods in Programming 85, 1 (2016),
3-33.

Thomas Genet and Vlad Rusu. 2010. Equational Approximations for Tree
Automata Completion. Journal of Symbolic Computation 45, 5 (2010),
574-597.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets using
Input-Output Examples. ACM Sigplan Notices 46, 1 (2011), 317-330.
Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. 2003.
Programming by Demonstration Using Version Space Algebra. Machine

Learning 53, 1 (2003), 111-156.

Tom M. Mitchell. 1982. Generalization as Search. Artif. Intell. 18, 2 (1982),
203-226. https://doi.org/10.1016/0004-3702(82)90040-6

Charles Gregory Nelson. 1980. Techniques for program verification. Stanford
University.

Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing Congru-
ence Closure. In Term Rewriting and Applications, 16th International
Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lec-
ture Notes in Computer Science, Vol. 3467), Jirgen Giesl (Ed.). Springer,
453-468. https://doi.org/10.1007/978-3-540-32033-3_33

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
Saturation: A New Approach to Optimization. In Proceedings of the 36th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 264-276.

Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan
Leang. 2020. SPORES: Sum-Product Optimization via Relational Equality
Saturation for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 11
(2020), 1919-1932. http://www.vldb.org/pvldb/vol13/p1919-wang.pdf

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary
Tatlock, and Pavel Panchekha. 2021. Egg: Fast and Extensible Equality
Saturation. Proceedings of the ACM on Programming Languages 5, POPL
(2021), 1-29.

Yichen Yang, Mangpo Phitchaya Phothilimtha, Yisu Remy Wang, Max
Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation
for Tensor Graph Superoptimization. CoRR abs/2101.01332 (2021).
arXiv:2101.01332 https://arxiv.org/abs/2101.01332


https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1007/978-3-540-32033-3_33
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
https://arxiv.org/abs/2101.01332
https://arxiv.org/abs/2101.01332

	References

