
Remy Wang, 4/29/25

Transactions & Schedules



into the hard drive: https://youtu.be/f07mLQwt-AI

magnets! https://youtu.be/f3BNHhfTsvk

real drive: https://youtube.com/shorts/0i1Ynk2WVGw

https://youtu.be/f07mLQwt-AI
https://youtu.be/f3BNHhfTsvk
https://youtube.com/shorts/0i1Ynk2WVGw






input/output (IO)



input/output (IO)

fast
slow



What do these have to do with transactions? 



concurrency != parallelism



keep both busy



x = READ(A)

x = f(x)

WRITE(A, x)

y = READ(B)

y = g(y)

WRITE(B, y)

T1 T2

time



x = READ(A) y = READ(B)

x = f(x) y = g(y)

WRITE(A, x) WRITE(B, y)

T1 T2

time



x = READ(A)

x = f(x) y = READ(B)

WRITE(A, x) y = g(y)

WRITE(B, y)

T1 T2

time



schedule

ordering of actions s.t.:

1. TXNs don't interfere

2. improve concurrency



schedule

ordering of actions s.t.:

1. TXNs don't interfere

2. improve concurrency

strict



x = READ(A)

x = f(x)

WRITE(A, x)

y = READ(B)

y = g(y)

WRITE(B, y)

T1 T2

time



READ(A)

WRITE(A)

READ(B)

WRITE(B)

T1 T2

time



READ(A)

WRITE(A)

READ(B)

WRITE(B)

T1 T2

time



READ(B)

WRITE(B)

READ(A)

WRITE(A)

T1 T2

time



serial schedule

1 TXN at a time

2 serial schedules can differ!



x = READ(A)

WRITE(A, x)

y = READ(A)

WRITE(A, y)

T1 T2

time

x = 2x

y = y+2

A = 10

A = ?

A = ?



y = READ(A)

WRITE(A, y)

x = READ(A)

WRITE(A, x)

T1 T2

time

A = 10

y = y+2

A = ?

x = 2x

A = ?



serial schedule

1 TXN at a time

2 serial schedules can differ!
not our problem though 🤷



serial schedule

1 TXN at a time

2 serial schedules can differ!
not our problem though 🤷

slow



x = READ(A)

WRITE(A, x)

y = READ(B)

WRITE(B, y)

T1 T2

x = READ(A)

y = READ(B)

WRITE(A, x)

WRITE(B, y)

T1 T2



x = READ(A)

x = 2x

WRITE(A, x)

y = READ(B)

y = y + 2

WRITE(B, y)

T1 T2

x = READ(A)

x = 2x y = READ(B)

WRITE(A, x) y = y+2

WRITE(B, y)

T1 T2



serial schedule

1 TXN at a time

interleaved TXNs improve concurrency

slow



serial schedule

1 TXN at a time

interleaved TXNs improve concurrency

slow

but how?



x = READ(A)

x = 2x

WRITE(A, x)

y = READ(B)

y = y + 2

WRITE(B, y)

T1 T2

x = READ(A)

x = 2x y = READ(B)

WRITE(A, x) y = y+2

WRITE(B, y)

T1 T2

same result!



x = R(A)

x = 2x

W(A, x)

y = R(A)

y = y + 2

W(A, y)

T1 T2

x = R(A)

x = 2x y = R(A)

W(A, x) y = y+2

W(A, y)

T1 T2

y = R(A)

y = y + 2

W(A, y)

x = R(A)

x = 2x

W(A, x)

T1 T2



serializable schedule

equivalent to some serial schedule
how to check?



conflict

2 actions conflict

if they affect each other



R(A)

R(B)

W(A)

W(B)

T1 T2



R(A)

R(A)

W(A)

W(A)

T1 T2



conflict

R1(x), W2(x)

W1(x), R2(x)

W1(x), W2(x)



conflict-equivalent

2 schedules conflict-equivalent

if one "swaps" into the other



R(A)

R(B)

W(A)

W(B)

T1 T2

R(A)

W(A)

R(B)

W(B)

T1 T2



R(A)

R(B)

W(A)

W(B)

T1 T2

R(A)

W(A)

R(B)

W(B)

T1 T2



conflict-serializable

a schedule is conflict-serializable

if conflict-equivalent to a serial one



R(A)

R(B)

W(A)

W(B)

T1 T2

R(A)

W(A)

R(B)

W(B)

T1 T2



R(A)

R(A)

W(A)

W(A)

T1 T2

R(A)

W(A)

R(A)

W(A)

T1 T2



safe fast

serial concurrent

conflict-serializable



safe fast

serial concurrent

conflict-serializableserializable



conflict-serializable

a schedule is conflict-serializable

if conflict-equivalent to a serial one



conflict-serializable

a schedule is conflict-serializable

if conflict-equivalent to a serial one





x = R(A) ...

y = R(A) ...

W(A, y) ...

W(A, x) ...

W(A, 0)

T1 T2 ... TJ



safe fast

serial concurrent

conflict-serializableserializable



check conflict-serializable?

use the precedence graph



r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

nodes: TXNs

edges: conflicts (between TXNs)



theorem

a schedule is conflict-serializable

iff the precedence graph has no cycle



r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

nodes: TXNs

edges: conflicts (between TXNs)

1 must happen 
before 2



r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

nodes: TXNs

edges: conflicts (between TXNs)



to ensure serializability...

use locks!



enforce serial schedule?



enforce serial schedule?

each TXN lock entire DB

SQLite does this!



L

R(A)

W(A)

U

L

R(B)

W(B)

U

T1 T2



enforce serial schedule?

each TXN lock entire DB

SQLite does this!

but uses read/write lock to be fast



SQLite locks

read lock upon SELECT

upgrade to write lock upon INSERT

read locks are shared, write exclusive



RL

R(A) RL

R(B)

U

WL

W(A)

U

T1 T2



R(A)

R(A)

W(A)

W(A)

T1 T2



RL

R(A) RL

R(B)

WL

WL W(B)

W(A)

U

T1 T2



one lock per DB "item"

item = row, entry, page, etc.

improve concurrency



L

R(A)

W(A)

U

L

R(B)

W(B)

U

T1 T2



L(A)

R(A) L(B)

W(A) R(B)

U(A) W(B)

U(B)

T1 T2



L(A), R(A)

W(A), U(A)

L(A), R(A)

W(A), U(A)

L(B), R(B)

W(B), U(B)

L(B), R(B)

W(B), U(B)

T1 T2



R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

T1 T2


