Transactions & Schedules

Remy Wang, 4/29/25

into the hard drive: <u>https://youtu.be/f07mLQwt-AI</u>

magnets! <u>https://youtu.be/f3BNHhfTsvk</u>

real drive: https://youtube.com/shorts/0i1Ynk2WVGw

input/output (**IO**)

input/output (**IO**)

What do these have to do with transactions?

concurrency != parallelism

keep both busy

		T1	Τ2
		x = READ(A)	y = READ(B)
		x = f(x)	y = g(y)
time		WRITE(A, x)	WRITE(B, y)
ume			
	7		

		Τ1	Τ2
		x = READ(A)	
		x = f(x)	y = READ(B)
time		WRITE(A, x)	y = g(y)
ume			WRITE(B, y)
	,		

schedule

ordering of actions s.t.:

1. TXNs don't interfere

2. improve concurrency

schedule

strict ordering of actions s.t.:

1. TXNs don't interfere

2. improve concurrency

time

1 TXN at a time

2 serial schedules can differ!

1 TXN at a time

2 serial schedules can differ!

not our problem though 👋

1 TXN at a time **slow**

2 serial schedules can differ!

not our problem though 擧

T1 T2		T1	Τ2	
x = READ(A)		x = READ(A)		
WRITE(A, x)			y = READ(B)	
	y = READ(B)	WRITE(A, x)		
	WRITE(B, y)		WRITE(B, y)	

x = READ(A)		x = READ(A)	
x = 2x		x = 2x	y = READ(B)
WRITE(A, x)		WRITE(A, x)	y = y+2
	y = READ(B)		WRITE(B, y)
	y = y + 2		
	WRITE(B, y)		

1 TXN at a time **slow**

interleaved TXNs improve concurrency

1 TXN at a time **slow**

interleaved TXNs improve concurrency

but how?

same result!

x = READ(A)	
x = 2x	
WRITE(A, x)	
	y = READ(B)
	y = y + 2
	WRITE(B, y)

x = READ(A)			
x = 2x	y = READ(B)		
WRITE(A, x)	y = y+2		
	WRITE(B, y)		

Τ1	Τ2	Τ1	Τ2	Τ1	Τ2
x = R(A)			y = R(A)	x = R(A)	
x = 2x			y = y + 2	x = 2x	y = R(A)
W(A, x)			W(A, y)	W(A, x)	y = y+2
	y = R(A)	x = R(A)			W(A, y)
	y = y + 2	x = 2x			
	W(A, y)	W(A, x)			

serializable schedule

equivalent to some serial schedule

how to check?

conflict

2 actions conflict

if they affect each other

conflict

 $R_1(x), W_2(x)$

 $W_1(x), R_2(x)$

 $W_1(x), W_2(x)$

conflict-equivalent

2 schedules conflict-equivalent

if one "swaps" into the other

Τ1	Τ2	
R(A)		
W(A)		
	R(B)	
	W(B)	

R(A)	
	R(B)
W(A)	
	W(B)

T1 T2

Τ1	Τ2	Τ1	Τ2
R(A)		R(A)	
W(A)			R(B)
	R(B)	W(A)	
	W(B)		W(B)

conflict-serializable

a schedule is conflict-serializable

if conflict-equivalent to a serial one

Τ1	Τ2	Τ1	Τ2
R(A)		R(A)	
W(A)			R(B)
	R(B)	W(A)	
	W(B)		W(B)

Τ1	Τ2	Τ1	Τ2
R(A)		R(A)	
W(A)			R(A)
	R(A)	W(A)	
	W(A)		W(A)

conflict-serializable

a schedule is conflict-serializable

if conflict-equivalent to a serial one

serializable

a schedule is

serializable

if equivalent to a serial one

x = R(A)		• • •	
	y = R(A)	• • •	
	W(A, y)	• • •	
W(A, x)		• • •	
			W(A, O)

check conflict-serializable?

use the precedence graph

nodes: TXNs

edges: conflicts (between TXNs)

r₂(A); r₁(B); w₂(A); r₃(A); w₁(B); w₃(A); r₂(B); w₂(B)

1 2 3

theorem

a schedule is conflict-serializable

iff the precedence graph has no cycle

nodes: TXNs

edges: conflicts (between TXNs)

r₂(A); r₁(B); w₂(A); r₃(A); w₁(B); w₃(A); r₂(B); w₂(B)

nodes: TXNs

edges: conflicts (between TXNs)

r₂(A); r₁(B); w₂(A); r₂(B); r₃(A); w₁(B); w₃(A); w₂(B)

1 2 3

to ensure serializability...

use locks!

enforce serial schedule?

enforce serial schedule?

each TXN lock entire DB

SQLite does this!

Τ1	Τ2
----	----

L	
R(A)	
W(A)	
U	
	L
	R(B)
	W(B)
	U

enforce serial schedule?

each TXN lock entire DB

SQLite does this!

but uses read/write lock to be fast

SQLite locks

read lock upon SELECT

upgrade to write lock upon INSERT

read locks are shared, write exclusive

RL	
R(A)	RL
	R(B)
	U
WL	
W(A)	
U	

T1	Τ2
----	----

R(A)	
	R(A)
	W(A)
W(A)	

RL	
R(A)	RL
	R(B)
	WL
₩L	W(B)
W(A)	W(B)
WL W(A) U	W(B)

one lock per DB "item"

item = row, entry, page, etc.

improve concurrency

Τ1	Τ2
----	----

L	
R(A)	
W(A)	
U	
	L
	R(B)
	W(B)
	U

T1	Τ2
----	----

L(A)	
R(A)	L(B)
W(A)	R(B)
U(A)	W(B)
	U(B)

L <mark>(</mark> A), R(A)	
W(A), <mark>U(A)</mark>	
	L <mark>(</mark> A), R(A)
	W(A), <mark>U(A)</mark>
	L <mark>(</mark> B), R(B)
	W(B), <mark>U(B)</mark>
L(B), R(B)	
W(B), <mark>U(B)</mark>	

Τ1

Τ1

R(A)	
W(A)	
	R(A)
	W(A)
	R(B)
	W(B)
R(B)	
W(B)	