
My hands are mostly fine now ! but I'll steal UW slides 1 more time

Motivation

▪ SQL is a declarative language:
we say what, we don’t say how

▪ The query optimizer needs to convert the query
into some intermediate language that can be both
optimized, and executed

▪ That language is Relational Algebra

October 11, 2024 Relational Algebra 4

The Five Basic Relational Operators

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference −

Rename ρ

October 11, 2024 Relational Algebra 5

Let’s discuss them one by one

October 11, 2024 Relational Algebra 6

1. Selection

σcondition(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;

October 11, 2024 Relational Algebra 7

1. Selection

σcondition(T)

Returns those tuples in T
that satisfy the condition:

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 Payroll =
SELECT *
FROM T
WHERE condition;

October 11, 2024 Relational Algebra 8

1. Selection

σcondition(T)

Returns those tuples in T
that satisfy the condition:

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 Payroll =

UserID Name Job Salary
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

SELECT *
FROM T
WHERE condition;

October 11, 2024 Relational Algebra 9

1. Selection

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 and Job=′TA′ Payroll =

σcondition(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;

October 11, 2024 Relational Algebra 10

1. Selection

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 and Job=′TA′ Payroll =

UserID Name Job Salary
345 Allison TA 60000σcondition(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;

October 11, 2024 Relational Algebra 11

2. Projection

Πattrs(T)

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

October 11, 2024 Relational Algebra 12

2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠName,Salary Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

October 11, 2024 Relational Algebra 13

2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠName,Salary Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Name Salary
Jack 50000
Allison 60000
Magda 90000
Dan 100000

October 11, 2024 Relational Algebra 14

2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠJob Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

October 11, 2024 Relational Algebra 15

2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠJob Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Job
TA
TA
Prof
Prof

October 11, 2024 Relational Algebra 16

2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠJob Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Job
TA
TA
Prof
Prof

RA can be defined
using bag semantics
or set semantics.
We always need to say
which one we mean.

Job
TA
Prof

October 11, 2024 Relational Algebra 17

3. Join

S ⋈θ T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

October 11, 2024 Relational Algebra 18

3. Join

S ⋈θ T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈UserID=UserID Regist =

October 11, 2024 Relational Algebra 19

3. Join

S ⋈θ T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈UserID=UserID Regist =

UserID Name Job Salary UserID Car

123 Jack TA 50000 123 Charger

567 Magda Prof 90000 567 Civic

567 Magda Prof 90000 567 Pinto

Many Variants of Join

▪ Eq-join: Payroll ⋈UserID=UserID Regist

▪ Theta-join: Payroll ⋈UserID<UserID Regist

▪ Cartesian product: Payroll × Regist

▪ Natural Join: Payroll ⋈ Regist

October 11, 2024 Relational Algebra 20

Many Variants of Join

▪ Eq-join: Payroll ⋈UserID=UserID Regist

▪ Theta-join: Payroll ⋈UserID<UserID Regist

▪ Cartesian product: Payroll × Regist

▪ Natural Join: Payroll ⋈ Regist

October 11, 2024 Relational Algebra 21

Only =

Any condition

Many Variants of Join

▪ Eq-join: Payroll ⋈UserID=UserID Regist

▪ Theta-join: Payroll ⋈UserID<UserID Regist

▪ Cartesian product: Payroll × Regist

▪ Natural Join: Payroll ⋈ Regist

October 11, 2024 Relational Algebra 22

Next

Only =

Any condition

October 11, 2024 Relational Algebra 23

Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T

October 11, 2024 Relational Algebra 24

Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll × Regist =

October 11, 2024 Relational Algebra 25

Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll × Regist =

UserID Name Job Salary UserID Car

123 Jack TA 50000 123 Charger

123 Jack TA 50000 567 Civic

. . .

789 Dan Prof 100000 567 Pinto

12 tuples

October 11, 2024 Relational Algebra 26

Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T

Join = cartesian product + selection

R ⋈θ S = σθ(R × S)

October 11, 2024 Relational Algebra 27

Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

October 11, 2024 Relational Algebra 28

Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈ Regist =

October 11, 2024 Relational Algebra 29

Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈ Regist =

UserID Name Job Salary Car

123 Jack TA 50000 Charger

567 Magda Prof 90000 Civic

567 Magda Prof 90000 Pinto

Only one
UserID attr

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

October 11, 2024 Relational Algebra 30

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

October 11, 2024 Relational Algebra 31

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

October 11, 2024 Relational Algebra 32

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

October 11, 2024 Relational Algebra 33

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)
 cross product (12 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

October 11, 2024 Relational Algebra 34

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)
 cross product (12 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

October 11, 2024 Relational Algebra 35

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

R A B
1 10

2 10

2 20

S A B
1 10

2 20

Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)
 cross product (12 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)
 intersection (2 tuples)

October 11, 2024 Relational Algebra 36

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

R A B
1 10

2 10

2 20

S A B
1 10

2 20

Even More Joins

▪ Inner join ⋈
• Eq-join, theta-join, cross product, natural join

▪ Outer join
• Left outer join ⟕
• Right outer join ⟖
• Full outer join ⟗

▪ Semi join ⋉

October 11, 2024 Relational Algebra 37

October 11, 2024 Relational Algebra 38

4. Union

S ∪ T

The union of S and T

S UNION T;

SQL

October 11, 2024 Relational Algebra 39

4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

October 11, 2024 Relational Algebra 40

4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

Must have
same schema

October 11, 2024 Relational Algebra 41

4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

UserID Model

123 Charger

567 Civic

567 Pinto

345 Schwinn

567 Sirrus

Must have
same schema

October 11, 2024 Relational Algebra 42

5. Difference

S − T

The set difference of S and T

S EXCEPT T;

SQL

October 11, 2024 Relational Algebra 43

5. Difference

S − T

The set difference of S and T

S EXCEPT T;

Regist − Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Civic

Bicycle

Must have
same schema

October 11, 2024 Relational Algebra 44

5. Difference

S − T

The set difference of S and T

S EXCEPT T;

Regist − Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Civic

Bicycle

UserID Model

123 Charger

567 Pinto

Must have
same schema

October 11, 2024 Relational Algebra 45

Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

October 11, 2024 Relational Algebra 46

Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

ρUserID,Model(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

October 11, 2024 Relational Algebra 47

Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

ρUserID,Model(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

123 Charger

567 Civic

567 Pinto

October 11, 2024 Relational Algebra 48

Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

ρUserID,Model(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

123 Charger

567 Civic

567 Pinto

Corrected union:

ρUserID,Model(Regist) ∪ Bicycle

The Five Basic Relational Operators

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference −

Rename ρ

October 11, 2024 Relational Algebra 49

Which operators are monotone?

The Five Basic Relational Operators

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference −

Rename ρ

October 11, 2024 Relational Algebra 50

Which operators are monotone?

Monotone

Non-monotone

Monotone, but doesn’t do anything

October 11, 2024 Relational Algebra 51

Query Plans

October 11, 2024 Relational Algebra 52

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

October 11, 2024 Relational Algebra 53

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

ΠName(σJob=′TA′(Payroll ⋈ Regist))

October 11, 2024 Relational Algebra 54

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

Payroll Regist

⋈

σJob=‘TA’

ΠName

ΠName(σJob=′TA′(Payroll ⋈ Regist))

We write it as

a query plan

October 11, 2024 Relational Algebra 55

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

Payroll Regist

⋈

σJob=‘TA’

ΠName

ΠName(σJob=′TA′(Payroll ⋈ Regist))

Data
flows
this
way

We write it as

a query plan

October 11, 2024 Relational Algebra 56

Query Plan: Attribute Names

Payroll

Regist

⋈UserID=Uid

σJob=‘TA’

ΠName

Managing attribute names
correctly is tedious

ρUid,Car

Rename
UserID to Uid
to distinguish
from Payroll

Better: use aliases,
much like in SQL

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Now it’s
clear which

UserID

October 11, 2024 Relational Algebra 57

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

October 11, 2024 Relational Algebra 58

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

October 11, 2024 Relational Algebra 59

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Another way
how to get it

October 11, 2024 Relational Algebra 60

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Another way
how to get it

Which one
is more

efficient?

October 11, 2024 Relational Algebra 61

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Another way
how to get it

Which one
is more

efficient?

Most likely
this one

Discussion

▪ Database system converts a SQL query to a
Relational Algebra Plan

October 11, 2024 Relational Algebra 62

Discussion

▪ Database system converts a SQL query to a
Relational Algebra Plan

▪ Then it optimizes the plan by exploring equivalent
plans, using simple algebraic identities:
 𝑅 ⋈ 𝑆 = 𝑆 ⋈ 𝑅
 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇
 𝜎𝜃 𝑅 ⋈ 𝑆 = 𝜎𝜃 𝑅 ⋈ 𝑆
 … many others*

October 11, 2024 Relational Algebra 63

*over 500 rules in SQL Server

October 11, 2024 RA and ER 8

SQL to RA
Single SELECT-FROM-WHERE query:

SELECT attrs
FROM T1,T2,...,Tn
WHERE condition;

T1

⋈

σcondition

Πattrs

T2

T3

⋈
Tn

⋈

October 11, 2024 RA and ER 9

SQL to RA
Single SELECT-FROM-WHERE query:

SELECT attrs
FROM T1,T2,...,Tn
WHERE condition;

T1

⋈

σcondition

Πattrs

T2

T3

⋈
Tn

⋈

Next: to convert group-by
we need to extend RA

Extended Relational Algebra

▪ Duplicate elimination δ

▪ Group-by aggregate γattr1,attr2,…,agg1,…

October 11, 2024 RA and ER 10

October 11, 2024 RA and ER 11

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

SELECT DISTINCT *
FROM T;

October 11, 2024 RA and ER 12

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

𝛿 R =

SELECT DISTINCT *
FROM T; R A B

1 10

2 10

2 10

2 20

1 10

October 11, 2024 RA and ER 13

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

𝛿 R =

SELECT DISTINCT *
FROM T; R A B

1 10

2 10

2 10

2 20

1 10

A B
1 10

2 10

2 20

October 11, 2024 RA and ER 14

GroupBy-Aggregate

𝛾𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,…,𝑎𝑔𝑔1,…(T)

Group-by, then aggregate

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

October 11, 2024 RA and ER 15

GroupBy-Aggregate

𝛾𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,…,𝑎𝑔𝑔1,…(T)

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Group-by, then aggregate

γJob,avg Salary →S Payroll =

October 11, 2024 RA and ER 16

GroupBy-Aggregate

𝛾𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,…,𝑎𝑔𝑔1,…(T)

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Job S

TA 55000

Prof 95000

Group-by, then aggregate

γJob,avg Salary →S Payroll =

October 11, 2024 RA and ER 17

GroupBy-Aggregate

No need for a HAVING operator!

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

October 11, 2024 RA and ER 18

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

October 11, 2024 RA and ER 19

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

σS<70000’

ΠJob

γJob,avg Salary →S

Payroll

σSalary>55000

October 11, 2024 RA and ER 20

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000 WHERE

σS<70000’

ΠJob

γJob,avg Salary →S

Payroll

σSalary>55000

October 11, 2024 RA and ER 21

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

HAVING

WHERE

σS<70000’

ΠJob

γJob,avg Salary →S

Payroll

σSalary>55000

Discussion

The Greek alphabet soup:

▪ 𝜎, Π, 𝛿, 𝛾

▪ They are standard RA symbols, get used to them

Next: converting nested SQL queries to RA

October 11, 2024 RA and ER 22

October 11, 2024 RA and ER 23

Nested SQL to RA

Nested Queries to RA

▪ RA is an algebra: has no nested expressions

▪ We cannot write EXISTS or NOT EXISTS in 𝜎

▪ First unnest SQL query, then convert to RA

October 11, 2024 RA and ER 24

October 11, 2024 RA and ER 25

A Simple Case: the WITH Clause
WITH Cardrivers AS
 (SELECT DISTINCT P.*
 FROM Payroll P, Regist R
 WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

October 11, 2024 RA and ER 26

A Simple Case: the WITH Clause
WITH Cardrivers AS
 (SELECT DISTINCT P.*
 FROM Payroll P, Regist R
 WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.∗

γavg(P.Salary)

𝛿

October 11, 2024 RA and ER 27

A Simple Case: the WITH Clause
WITH Cardrivers AS
 (SELECT DISTINCT P.*
 FROM Payroll P, Regist R
 WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Computes
Cardrivers

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.∗

γavg(P.Salary)

𝛿

October 11, 2024 RA and ER 28

A Simple Case: the WITH Clause
WITH Cardrivers AS
 (SELECT DISTINCT P.*
 FROM Payroll P, Regist R
 WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.∗

γavg(P.Salary)

Computes
Cardrivers

Does the rest

𝛿

October 11, 2024 RA and ER 29

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

October 11, 2024 RA and ER 30

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

October 11, 2024 RA and ER 31

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.UserID, P.Name

The convert
to RA

𝛿

October 11, 2024 RA and ER 32

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.UserID, P.Name

The convert
to RA

𝛿 DISTINCT

October 11, 2024 RA and ER 33

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

October 11, 2024 RA and ER 34

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎𝑛𝑜𝑡(𝑒𝑥𝑖𝑠𝑡𝑠 …)

Totally, totally
wrong!

October 11, 2024 RA and ER 35

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎𝑛𝑜𝑡(𝑒𝑥𝑖𝑠𝑡𝑠 …)

Totally, totally
wrong!

There are no
subqueries in RA.

October 11, 2024 RA and ER 36

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎𝑛𝑜𝑡(𝑒𝑥𝑖𝑠𝑡𝑠 …)

Totally, totally
wrong!

There are no
subqueries in RA.

Need to unnest,
but first need to de-correlate.

October 11, 2024 RA and ER 37

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
 (SELECT R.UserID
 FROM Regist R);

First
de-correlate

October 11, 2024 RA and ER 38

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
 (SELECT R.UserID
 FROM Regist R);

SELECT P.UserID
FROM Payroll P
 EXCEPT
SELECT R.UserID
FROM Regist R;

First
de-correlate

Then unnest
using set difference

October 11, 2024 RA and ER 39

A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
 (SELECT R.UserID
 FROM Regist R);

SELECT P.UserID
FROM Payroll P
 EXCEPT
SELECT R.UserID
FROM Regist R;

Payroll P Regist R

ΠP.UserID ΠR.UserID

−

First
de-correlate

Then unnest
using set difference

Finally,
rewrite to RA

Discussion

▪ SQL = declarative language; what we want
RA = an algebra; how to get it

▪ We write in SQL, optimizers generates RA

▪ Some language resemble RA more than SQL,
e.g. Spark

Next topic: how to design a database from scratch

October 11, 2024 RA and ER 40

October 11, 2024 RA and ER 41

Database Design

Database Design

▪ New application needs persistent database.

▪ The database will persist for a long period of time.
We need a good design from day 1.

▪ Incorporate feedback from many stakeholders
• Programmers, business teams, analysts, data

scientists, product managers, …

October 11, 2024 RA and ER 42

October 11, 2024 43

The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

To
da

y

RA and ER

RA and ER 44

The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

Conceptual Schema
+ Normalization

To
da

y
N

ex
t L

ec
tu

re
s

October 11, 2024

45

The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning
+ Indexing

To
da

y
La

te
r…

N
ex

t L
ec

tu
re

s

October 11, 2024 RA and ER

ER Diagrams

Entity-Relationship (ER) Diagrams

▪ A visual way to describe the schema of a database

▪ Language independent: may implement in SQL, or
some other data model

October 11, 2024 RA and ER 46

Example

Application to track the lifetime of products

▪ Keep information about Products: name, price, …

▪ Who manufactures them? Company name,
address, their workers, …

▪ Who buys them? Customers with their names, …

October 11, 2024 RA and ER 47

RA and ER 48

Example: designing the Entity Sets

Product

October 11, 2024

RA and ER 49

Example: designing the Entity Sets

Product Company

Worker

October 11, 2024

RA and ER 50

Example: designing the Entity Sets

Product Company

WorkerBuyer

October 11, 2024

RA and ER 51

Example: designing the Entity Sets

Product Company

WorkerBuyer

Should these be
different entity sets?

October 11, 2024

RA and ER 52

Example: designing the Entity Sets

Product Company

Person

Let’s keep things
simple for now

October 11, 2024

RA and ER 53

Example: adding Attributes

Product Company

Person

Next, let’s design
their attributes

October 11, 2024

RA and ER 54

Example: adding Attributes

Product Company

Person

Price

Name

PID

October 11, 2024

RA and ER 55

Example: adding Attributes

Product Company

Person

Price

Name
Name

CIDPID

October 11, 2024

RA and ER 56

Example: adding Attributes

Product Company

Person

Price

Name Ceo
Name

Address
CIDPID

Determine ALL
attributes that

your application
needs

October 11, 2024

RA and ER 57

Example: adding Attributes

Product Company

Person

Price

Name Ceo
Name

Address

address name UID

CIDPID

October 11, 2024

RA and ER 58

Example: adding Relationships

Product Company

Person

Price

Name Ceo
Name

Address

address name UID

CIDPID

Next, design the
relationships

October 11, 2024

RA and ER 59

Example: adding Relationships

Product Company

Person

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID

October 11, 2024

RA and ER 60

Example: adding Relationships

Product Company

Person Employs

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID

October 11, 2024

RA and ER 61

Example: adding Relationships

Product Company

Person EmploysBuys

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID

October 11, 2024

RA and ER 62

Example: Refining the Schema

Product Company

Person EmploysBuys

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID
Actually, we want separate

Buyers and Workers

October 11, 2024

RA and ER 63

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

October 11, 2024

RA and ER 64

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

October 11, 2024

name

UID

address

RA and ER 65

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

Unit

October 11, 2024

name

UID

address

RA and ER 66

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

UnitRating

October 11, 2024

name

UID

address

RA and ER 67

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

UnitRating

October 11, 2024

name

UID

address

Duplication

RA and ER 68

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker
isA

Person

isA

name UIDaddress

UnitRating

October 11, 2024

