
My hands are mostly fine now ! but I'll steal UW slides 1 more time



Motivation

▪ SQL is a declarative language:
we say what, we don’t say how

▪ The query optimizer needs to convert the query 
into some intermediate language that can be both 
optimized, and executed

▪ That language is Relational Algebra
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The Five Basic Relational Operators

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference − 

Rename ρ
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Let’s discuss them one by one
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1. Selection

σcondition(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;
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1. Selection

σcondition(T)

Returns those tuples in T
that satisfy the condition:

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 Payroll =
SELECT *
FROM T
WHERE condition;
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1. Selection

σcondition(T)

Returns those tuples in T
that satisfy the condition:

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 Payroll =

UserID Name Job Salary
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

SELECT *
FROM T
WHERE condition;
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1. Selection

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 and Job=′TA′ Payroll =

σcondition(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;
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1. Selection

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σsalary≥55000 and Job=′TA′ Payroll =

UserID Name Job Salary
345 Allison TA 60000σcondition(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;
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2. Projection

Πattrs(T)

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;



October 11, 2024 Relational Algebra 12

2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠName,Salary Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;
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2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠName,Salary Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Name Salary
Jack 50000
Allison 60000
Magda 90000
Dan 100000
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2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠJob Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;
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2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠJob Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Job
TA
TA
Prof
Prof
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2. Projection

Πattrs(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

ΠJob Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Job
TA
TA
Prof
Prof

RA can be defined
using bag semantics
or set semantics.
We always need to say
which one we mean.

Job
TA
Prof
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3. Join

S ⋈θ T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;
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3. Join

S ⋈θ T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈UserID=UserID Regist =
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3. Join

S ⋈θ T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈UserID=UserID Regist =

UserID Name Job Salary UserID Car

123 Jack TA 50000 123 Charger

567 Magda Prof 90000 567 Civic

567 Magda Prof 90000 567 Pinto



Many Variants of Join

▪ Eq-join: Payroll ⋈UserID=UserID Regist

▪ Theta-join: Payroll ⋈UserID<UserID Regist

▪ Cartesian product: Payroll × Regist

▪ Natural Join: Payroll ⋈ Regist
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Many Variants of Join

▪ Eq-join: Payroll ⋈UserID=UserID Regist

▪ Theta-join: Payroll ⋈UserID<UserID Regist

▪ Cartesian product: Payroll × Regist

▪ Natural Join: Payroll ⋈ Regist
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Only =

Any condition



Many Variants of Join

▪ Eq-join: Payroll ⋈UserID=UserID Regist

▪ Theta-join: Payroll ⋈UserID<UserID Regist

▪ Cartesian product: Payroll × Regist

▪ Natural Join: Payroll ⋈ Regist
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Next

Only =

Any condition
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Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T
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Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll × Regist =
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Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll × Regist =

UserID Name Job Salary UserID Car

123 Jack TA 50000 123 Charger

123 Jack TA 50000 567 Civic

. . .

789 Dan Prof 100000 567 Pinto

12 tuples
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Cartesian Product / Cross Product

S × T

Cross product of S and T

SELECT *
FROM S,T

Join = cartesian product + selection

R ⋈θ S = σθ(R × S)
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Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes
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Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈ Regist =
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Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈ Regist =

UserID Name Job Salary Car

123 Jack TA 50000 Charger

567 Magda Prof 90000 Civic

567 Magda Prof 90000 Pinto

Only one
UserID attr



Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
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Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
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R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7



Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
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R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7



Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
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R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w



Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 cross product (12 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
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R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w



Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 cross product (12 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
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R A B
1 10

2 10
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10 8
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S C D
8 u

9 v
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7 w

R A B
1 10

2 10

2 20

S A B
1 10

2 20



Natural Join

What do these natural joins output?
▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶  

 eqjoin on attribute B (5 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷) 
 cross product (12 tuples)

▪ 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵) 
 intersection (2 tuples)
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R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

R A B
1 10

2 10

2 20

S A B
1 10

2 20



Even More Joins

▪ Inner join ⋈
• Eq-join, theta-join, cross product, natural join

▪ Outer join
• Left outer join ⟕
• Right outer join ⟖
• Full outer join ⟗

▪ Semi join ⋉
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4. Union

S ∪ T

The union of S and T

S UNION T;

SQL
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4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle
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4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

Must have
same schema
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4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

UserID Model

123 Charger

567 Civic

567 Pinto

345 Schwinn

567 Sirrus

Must have
same schema
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5. Difference

S − T

The set difference of S and T

S EXCEPT T;

SQL
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5. Difference

S − T

The set difference of S and T

S EXCEPT T;

Regist − Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Civic

Bicycle

Must have
same schema
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5. Difference

S − T

The set difference of S and T

S EXCEPT T;

Regist − Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Civic

Bicycle

UserID Model

123 Charger

567 Pinto

Must have
same schema
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Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’, 
       a2 as a2’,
       ...
FROM T;
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Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’, 
       a2 as a2’,
       ...
FROM T;

ρUserID,Model(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist
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Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’, 
       a2 as a2’,
       ...
FROM T;

ρUserID,Model(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

123 Charger

567 Civic

567 Pinto
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Renaming

𝜌𝑎𝑡𝑡𝑟𝑠′(𝑇)

Rename attributes

SELECT a1 as a1’, 
       a2 as a2’,
       ...
FROM T;

ρUserID,Model(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

123 Charger

567 Civic

567 Pinto

Corrected union:

ρUserID,Model(Regist) ∪ Bicycle 



The Five Basic Relational Operators

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference − 

Rename ρ
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Which operators are monotone?



The Five Basic Relational Operators

1. Selection σcondition(S)

2. Projection Πattrs(S)

3. Join R ⋈θ S = σθ(R × S)

4. Union ∪

5. Set difference − 

Rename ρ
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Which operators are monotone?

Monotone

Non-monotone

Monotone, but doesn’t do anything
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Query Plans
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Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;
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Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

ΠName(σJob=′TA′(Payroll ⋈ Regist))
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Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

Payroll Regist

⋈

σJob=‘TA’

ΠName

ΠName(σJob=′TA′(Payroll ⋈ Regist))

We write it as

a query plan
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Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

Payroll Regist

⋈

σJob=‘TA’

ΠName

ΠName(σJob=′TA′(Payroll ⋈ Regist))

Data
flows
this
way

We write it as

a query plan
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Query Plan: Attribute Names

Payroll

Regist

⋈UserID=Uid

σJob=‘TA’

ΠName

Managing attribute names
correctly is tedious

ρUid,Car

Rename
UserID to Uid
to distinguish
from Payroll

Better: use aliases,
much like in SQL

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Now it’s
clear which

UserID
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Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it
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Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it
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Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Another way
how to get it
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Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Another way
how to get it

Which one
is more

efficient?
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Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.NameOne way
how to get it

Payroll P Regist R

⋈P.UserID=R.UserID

σP.Job=‘TA’

ΠP.Name

Another way
how to get it

Which one
is more

efficient?

Most likely
this one



Discussion

▪ Database system converts a SQL query to a 
Relational Algebra Plan
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Discussion

▪ Database system converts a SQL query to a 
Relational Algebra Plan

▪ Then it optimizes the plan by exploring equivalent 
plans, using simple algebraic identities:
 𝑅 ⋈ 𝑆 = 𝑆 ⋈ 𝑅
 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇 
 𝜎𝜃 𝑅 ⋈ 𝑆 = 𝜎𝜃 𝑅 ⋈ 𝑆
 … many others*

October 11, 2024 Relational Algebra 63

*over 500 rules in SQL Server
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SQL to RA
Single SELECT-FROM-WHERE query:

SELECT attrs
FROM T1,T2,...,Tn
WHERE condition;

T1

⋈

σcondition

Πattrs

T2

T3

⋈
Tn

⋈
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SQL to RA
Single SELECT-FROM-WHERE query:

SELECT attrs
FROM T1,T2,...,Tn
WHERE condition;

T1

⋈

σcondition

Πattrs

T2

T3

⋈
Tn

⋈

Next: to convert group-by
we need to extend RA



Extended Relational Algebra

▪ Duplicate elimination δ

▪ Group-by aggregate γattr1,attr2,…,agg1,…

October 11, 2024 RA and ER 10



October 11, 2024 RA and ER 11

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

SELECT DISTINCT *
FROM T;
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Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

𝛿 R =

SELECT DISTINCT *
FROM T; R A B

1 10

2 10

2 10

2 20

1 10
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Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

𝛿 R =

SELECT DISTINCT *
FROM T; R A B

1 10

2 10

2 10

2 20

1 10

A B
1 10

2 10

2 20
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GroupBy-Aggregate

𝛾𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,…,𝑎𝑔𝑔1,…(T)

Group-by, then aggregate

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;
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GroupBy-Aggregate

𝛾𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,…,𝑎𝑔𝑔1,…(T)

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Group-by, then aggregate

γJob,avg Salary →S Payroll =
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GroupBy-Aggregate

𝛾𝑎𝑡𝑡𝑟1,𝑎𝑡𝑡𝑟2,…,𝑎𝑔𝑔1,…(T)

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Job S

TA 55000

Prof 95000

Group-by, then aggregate

γJob,avg Salary →S Payroll =
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GroupBy-Aggregate

No need for a HAVING operator!

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000
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GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000
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GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

σS<70000’

ΠJob

γJob,avg Salary →S

Payroll

σSalary>55000
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GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000 WHERE

σS<70000’

ΠJob

γJob,avg Salary →S

Payroll

σSalary>55000
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GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

HAVING

WHERE

σS<70000’

ΠJob

γJob,avg Salary →S

Payroll

σSalary>55000



Discussion

The Greek alphabet soup:

▪ 𝜎, Π, 𝛿, 𝛾

▪ They are standard RA symbols, get used to them

Next: converting nested SQL queries to RA 
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Nested SQL to RA



Nested Queries to RA

▪ RA is an algebra: has no nested expressions

▪ We cannot write EXISTS or NOT EXISTS in 𝜎

▪ First unnest SQL query, then convert to RA
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A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;
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A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.∗

γavg(P.Salary)

𝛿
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A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Computes
Cardrivers

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.∗

γavg(P.Salary)

𝛿
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A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.∗

γavg(P.Salary)

Computes
Cardrivers

Does the rest

𝛿
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A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);
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A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest
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A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.UserID, P.Name

The convert
to RA

𝛿
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A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

Payroll P Regist R

⋈P.UserID=R.UserID

ΠP.UserID, P.Name

The convert
to RA

𝛿 DISTINCT
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎𝑛𝑜𝑡(𝑒𝑥𝑖𝑠𝑡𝑠 … )

Totally, totally
wrong!
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎𝑛𝑜𝑡(𝑒𝑥𝑖𝑠𝑡𝑠 … )

Totally, totally
wrong!

There are no
subqueries in RA.
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎𝑛𝑜𝑡(𝑒𝑥𝑖𝑠𝑡𝑠 … )

Totally, totally
wrong!

There are no
subqueries in RA.

Need to unnest,
but first need to de-correlate.
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
      (SELECT R.UserID
       FROM Regist R);

First
de-correlate
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
      (SELECT R.UserID
       FROM Regist R);

SELECT P.UserID
FROM Payroll P
   EXCEPT
SELECT R.UserID
FROM Regist R;

First
de-correlate

Then unnest
using set difference
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A Difficult Case: a Non-Monotone Query

SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
      (SELECT R.UserID
       FROM Regist R);

SELECT P.UserID
FROM Payroll P
   EXCEPT
SELECT R.UserID
FROM Regist R;

Payroll P Regist R

ΠP.UserID ΠR.UserID

−

First
de-correlate

Then unnest
using set difference

Finally,
rewrite to RA



Discussion

▪ SQL = declarative language; what we want
RA = an algebra; how to get it

▪ We write in SQL, optimizers generates RA

▪ Some language resemble RA more than SQL,
e.g. Spark

Next topic: how to design a database from scratch
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Database Design



Database Design

▪ New application needs persistent database.

▪ The database will persist for a long period of time. 
We need a good design from day 1.

▪ Incorporate feedback from many stakeholders
• Programmers, business teams, analysts, data 

scientists, product managers, …
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The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

To
da

y

RA and ER
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The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

Conceptual Schema
+ Normalization

To
da

y
N

ex
t L

ec
tu

re
s
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The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning
+ Indexing

To
da

y
La

te
r…

N
ex

t L
ec

tu
re

s
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ER Diagrams

Entity-Relationship (ER) Diagrams

▪ A visual way to describe the schema of a database

▪ Language independent: may implement in SQL, or 
some other data model
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Example

Application to track the lifetime of products

▪ Keep information about Products: name, price, …

▪ Who manufactures them?  Company name, 
address, their workers, …

▪ Who buys them? Customers with their names, …
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Example: designing the Entity Sets

Product

October 11, 2024
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Example: designing the Entity Sets

Product Company

Worker

October 11, 2024
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Example: designing the Entity Sets

Product Company

WorkerBuyer

October 11, 2024
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Example: designing the Entity Sets

Product Company

WorkerBuyer

Should these be
different entity sets?

October 11, 2024
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Example: designing the Entity Sets

Product Company

Person

Let’s keep things
simple for now

October 11, 2024
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Example: adding Attributes

Product Company

Person

Next, let’s design
their attributes
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Example: adding Attributes

Product Company

Person

Price

Name

PID

October 11, 2024
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Example: adding Attributes

Product Company

Person

Price

Name
Name

CIDPID

October 11, 2024
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Example: adding Attributes

Product Company

Person

Price

Name Ceo
Name

Address
CIDPID

Determine ALL
attributes that

your application
needs

October 11, 2024
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Example: adding Attributes

Product Company

Person

Price

Name Ceo
Name

Address

address name UID

CIDPID
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Example: adding Relationships

Product Company

Person

Price

Name Ceo
Name

Address

address name UID

CIDPID

Next, design the
relationships
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Example: adding Relationships

Product Company

Person

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID
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Example: adding Relationships

Product Company

Person Employs

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID
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Example: adding Relationships

Product Company

Person EmploysBuys

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID
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Example: Refining the Schema

Product Company

Person EmploysBuys

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID
Actually, we want separate

Buyers and Workers
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Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker
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Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

October 11, 2024
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UID

address
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Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

Unit

October 11, 2024

name

UID

address
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Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

UnitRating

October 11, 2024
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Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

UnitRating

October 11, 2024

name

UID

address

Duplication



RA and ER 68

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker
isA

Person

isA

name UIDaddress

UnitRating
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