[Tansaction locks

Remy Wang, 04/30/2025

TXN sequence of reads & writes

isolation 2 TXN must not interfere

schedule interleaving of TXN ops

serial sch. one at a time

serializable sch. equiv. to some serial sch.
conflict-serializable sch. conflict-equivalent to serial

precedence graph acyclic = conflict-serializable

TXN sequence of reads & writes

isolation 2 TXN must not interfere

schedule interleaving of TXN ops | how to get this?

serial sch. one at a time
serializable sch. equiv. to some serial sch.
conflict-serializable sch. conflict-equivalent to serial

precedence graph acyclic = conflict-serializable

deterministic scheduling

collect a batch of TXNs

compute serializable schedule

locking

TXNs lock & unlock DB items

enforce serial

11

12

L(DB)

U(DB)

L(DB)

U(DB)

"only lock what you need”

T T2
L(A)

W(A) | L(B)
U(A) | W(B)

U(B)

A=B=10

el
1

e

77

L(A), x=R(A)

W(A, x), U(A)

L(A), y =R(A)

W(A, y), U(A)

L(B), y =R(B)

W(B, y), U(B)

L(B), x =R(B)

W(B, x), U(B)

"lock all you need"

L(A), L(B)

R(A), W(A)

R(B), W(B)

U(A), U(B)
L(A), L(B)
R(A), W(A)
R(B), W(B)

U(A), U(B)

"lock all you need"

achieves isolation

"oroof": TXN holds all locks, so no one interferes

"lock all you need"

L(A), L(B)
R(A), W(A)
R(B), W(B)
U(A), U(B)
L(B)
R(B), W(B)

U(B)

2 phase locking (2PL)

all locks before any unlock

allow read/write sooner/later

2 phase locking (2PL)

L(A), x=R(A)

X = f(x)

L(B), R(B), W(B), U(B)

W(A), L(B), R(B), W(B)

U(A), U(B)

2 phase locking (2PL)

L(A), x=R(A)

X = f(x)

L(B), R(B), W(B), U(B)

W(A), L(B), U(A)

R(B), W(B), U(E)

Theorem: 2Pl — conflict-serializable

Proof: assume cycle in precedence graph

lemma: an edge @@ — Ui(X) ... Lj(X)

Theorem: 2Pl — conflict-serializable

Proof: assume cycle in precedence graph

lemma: an edge @@ — Ui(X) ... Lj(X)

W1(A) R2(A) ...

Theorem: 2Pl — conflict-serializable

Proof: assume cycle in precedence graph

lemma: an edge @@ — Ui(X) ... Lj(X)

WI1(A) ... UI(A) ... L2(A) ... R2(A)

Theorem: 2Pl — conflict-serializable

Proof: assume cycle in precedence graph

lemma: an edge @@ — Ui(X) ... Lj(X)

W1(A) ... U1(A) ... L2(A) ... R2(A)

U2(B) .. L3(B)

U3(C) .. L1(C)

Theorem: 2Pl — conflict-serializable

Proof: assume cycle in precedence graph

lemma: an edge @@ — Ui(X) ... Lj(X)

W1(A) ... U1(A) ... L2(A) ... R2(A)

2PL U2(B) .. L3(B)

U3(C) .. L1(C)

Theorem: 2Pl — conflict-serializable

Proof: assume cycle in precedence graph

lemma: an edge @@ — Ui(X) ... Lj(X)

W1(A) ... U1(A) ... L2(A) ... R2(A)
v.

2PL U2(B):.L3(B)

U3(C) .. L1(C) violates 2PL!

rollback

undo entire TXN

abort affected TXNs

2X

L(A), x=R(A)

—‘v%éx,—)?,- U(A)

L(A), y =R(A)

W(A, y), U(A)

COMMIT

ROLLBACK

strict 2PL

unlock exactly at commit/rollback

2X

L(A), x=R(A)

W(A, x)

ROLLBACK, U(A)

L(A), y =R(A)

W(A, y)

COMMIT, U(A)

strict 2PL guarantees:

isolation: conflict-serializability

atomicity: rollback TXNs are undone

@ perfect @

T1: W(A)W(B) T2: W(B)W(C) T3: W(C)W(D)

L(A)W(A)

L(B),W(B)

L(C)W(C)

L(B) blocked! | L(C) blocked! | L(A) blocked!

cx!

ADLO

®® DF

deadlock =

cannot make progress

because no TXN can acquire lock

checking for deadlock

construct wait-for graph

check for cycle

T1: W(A)W(B)

T2: W(B) W(C)

T3: W(C)W(D)

L(A)W(A) —

—

L(B),W(B)

N

/

/

=]

/\L@),W(C)

/

/

L(B)

\

L(C)

L(A)

if deadlock happens

rollback TXN to break cycle

make progress

T1: W(A)W(B) T2: W(B)W(C) T3: W(C)W(D)

L(A)W(A)

L(B),W(B)

L(C)W(C)

L(B) L(C) L(A)

T1: W(A)W(B) T2: W(B)W(C) T3: W(C)W(D)

L(A)W(A)

L(B),W(B)

L(C)W(C)

L(B) L(C) RLBCK, U(C)

T1: W(A)W(B) T2: W(B)W(C) T3: W(C)W(D)

L(A)W(A)

L(B),W(B)

L(C)W(C)

L(B) L(C) RLBCK, U(C)

T1: W(A)W(B) T2: W(B)W(C) T3: W(C)W(D)

L(A)W(A)

L(B),W(B)

L(C)W(C)

RLBCK, U(C)

L(C).W(C),U(*)

L(B),W(B),U(*)

o ©

TXN sequence of reads & writes

isolation 2 TXN must not interfere

atomicity TXN either completes or rolled back

serial sch. one at a time

serializable sch. equiv. to some serial sch.
conflict-serializable sch. conflict-equivalent to serial
strict 2PL: conflict-serializable & recoverable (atomicity)

deadlock can still occur, so abort & retry if so

TXN sequence of reads & writes

isolation 2 TXN must not interfere

atomicity TXN either completes or rolled back

serial sch. one at a time

serializable sch. equiv. to some serial sch.
conflict-serializable sch. conflict-equivalent to serial
strict 2PL: conflict-serializable & recoverable (atomicity)

still expensive!
deadlock can still occur, so abort & retry if so

shared/exclusive locks

X(A) exclusive locks

allows R/W, no other locks may exist

S(A) shared locks

allows R only, may exist with other 8§ locks

T1: R(A), W(A) T2: R(A)
S(A), R(A)
S(A), R(A)
KA WHA)

COMMIT, U(A)

X(A), W(A)

m T2 T3 T4 75
W(A) R(A) R(A) R(A) R(A)
XA T S(A)

XA S(A)
XA S(A)
XA S(A)

o0
Wl

starvation

TXN waits for lock but never gets it
1 type of lock: gueue TXNs

S/X lock: block S locks when X is waiting

starvation !=deadlock

S/X locks also cause more deadlocks

T1: R(A), W(A)

T2: R(A), W(A)

S(A), R(A)

S(A), R(A)

isolation levels

FAST CORRECT

isolation levels

avoid certain types of problems:
dirty read/inconsistent read
lost update

unrepeatable read

dirty/inconsistent read

seeing updates from uncommitted TXN

time

Manager wants to CEO wants to check

balance project budgets company balance
- SELECT SUM(budget) ...
-$10mil from project A -

+$7mil to project B \
X

+$3mil to project C
>

lost update

update overwritten by another TXN

A=B=100

W(A, 200)

W(B, O)

W(B, 200)

W(A, O)

A+B=200M

A=B=100

W(A, 200)

W(B, 200)

W(B, O)

W(A, O)

A=B=0X

unrepeatable read

two reads give different results

A =100

R(A)

W(A, O)

R(A)

A =100

isolation levels

FAST CORRECT

read uncommitted

Strict 2PL for writes

no locks at all for reads!

read uncommitted

very fast reads
assumes few/no writes

read accuracy is not critical

isolation levels

FAST ‘ CORRECT

read committed

Strict 2PL for writes

on-demand read locks (not 2PL!)
lock =& R = unlock

no dirty reads, possible unrepeatable reads

no dirty reads

W(A, 0)

COMMIT, U(A)

possible unrepeatable reads

L(A).R(A),U(A)

L(A),W(A),U(A)

L(A).R(A),U(A)

read committed

guarantee read result is valid at some point

useful for online shops

» . h‘
by Aal OA O W @ Reservation Not Possible
A j | — <« *
‘y{]r(}‘(" — Sorry, but the couchette berth you have requested

on the NJ 421 from Dusseldorf Hbf to Innsbruck
Hbf is no longer available. Please change your

mi “1-..‘ for FREE! reservation request.

OK

isolation levels

FAST ‘ CORRECT

repeatable read

Strict 2PL write locks
Strict 2PL read locks
conflict serializable!

but not serializable???

The Phantom Menace

= Same read has more rows
» Asset checking scenario:

Accountant wants to Warehouse catalogs
check company assets new products
SELECT *

FROM products
WHERE price < 10.00

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

time

SELECT *
FROM products
WHERE price < 10.00

possible unrepeatable reads

SELECT *

SELECT *

R(A), R(B)

W(C)

R(A), R(B), R(C)

INSERT

the phantom problem

conflict serializable = serializable w/o inserts

solution: lock entire table

possible unrepeatable reads

SELECT * L(T), R(T)

SELECT * R(T). C, U(T)

